Computationally-guided tuning of ligand sensitivity in a GPCR-based sensor

2021 
Genetically-encoded fluorescent sensors for neuromodulators are increasingly used molecular tools in neuroscience. However, these protein-based biosensors are often limited by the sensitivity of the protein scaffold towards endogenous ligands. Here, we explored the possibility of applying computational design approaches for enhancing sensor sensitivity. Using the dopamine sensor dLight1 as proof of concept, we designed two variants that boost the sensor9s potency (EC50) for dopamine and norepinephrine by up to 5- and 15-fold, respectively. Interestingly, the largest effects were obtained through improved designed allosteric transmission in the transmembrane region of the sensor. Our approach should prove generally useful for enhancing sensing capabilities of a large variety of neuromodulator sensors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []