Structural Re-engineering of the α-Helix Mimetic JY-1-106 into Small Molecules: Disruption of the Mcl-1-Bak-BH3 Protein-Protein Interaction with 2,6-Di-Substituted Nicotinates.

2016 
The disruption of aberrant protein-protein interactions (PPIs) with synthetic agents remains a challenging goal in contemporary medicinal chemistry but some progress has been made. One such dysregulated PPI is that between the anti-apoptotic Bcl-2 proteins, including myeloid cell leukemia-1 (Mcl-1), and the α-helical Bcl-2 homology-3 (BH3) domains of its pro-apoptotic counterparts, such as Bak. Herein, we describe the discovery of small-molecule inhibitors of the Mcl-1 oncoprotein based on a novel chemotype. Particularly, re-engineering of our α-helix mimetic JY-1-106 into 2,6-di-substituted nicotinates afforded inhibitors of comparable potencies but with significantly decreased molecular weights. The most potent inhibitor 2-(benzyloxy)-6-(4-chloro-3,5-dimethylphenoxy)nicotinic acid (1 r: Ki =2.90 μm) likely binds in the p2 pocket of Mcl-1 and engages R263 in a salt bridge through its carboxylic acid, as supported by 2D (1) H-(15) N HSQC NMR data. Significantly, inhibitors were easily accessed in just four steps, which will facilitate future optimization efforts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    21
    Citations
    NaN
    KQI
    []