Asynchronous Coded Caching Strategy With Nonuniform Demands for IoV Networks

2021 
The Internet of Vehicles (IoV) can offer safe and comfortable driving experiences with the cooperation communications between central servers and cache-enabled road side units (RSUs) as edge severs, which also can provide high-speed, high-quality and high-stability communication access for vehicle users (VUs). However, due to the huge popular traffic volume, the burden of backhaul link will be seriously enlarged, which will greatly degrade the service experience of the IoV. In order to alleviate the backhaul load of IoV network, in this paper, we propose an asynchronous coded caching strategy composed of two phases, i.e., content placement and asynchronous coded transmission. The asynchronous request and request deadline are closely considered to design our asynchronous coded transmission algorithm. Also, we derive the close-form expression of average backhaul load under the nonuniform demands of IoV users. Finally, we formulate an optimization problem of minimizing average backhaul load and obtain the optimized content placement vector. Simulation results verify the feasibility of our proposed strategy under the asynchronous situation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    0
    Citations
    NaN
    KQI
    []