[Senescence: a telomeric limit to immortality or a cellular response to physiologic stresses?].

2005 
: Cells entering a state of senescence undergo a irreversible cell cycle arrest, associated by a set of functional and morphological changes. Senescence occurs following telomeres shortening (replicative senescence) or exposure to other acute or chronic physiologic stress signals (a phenomenon termed stasis: stress or aberrant signaling-induced senescence). In this review, I discuss the pathways of cellular senescence, the mechanisms involved and the role that these pathways have in regulating the initiation and progression of cancer. Telomere-initiated senescence or loss of telomere function trigger focal recruitement of protein sensors of the DNA double-strand breaks leading to the activation of the DNA damage checkpoint responses and the tumour suppressor gene product, p53, which in turn induces the cell-cycle inhibitor, p21(WAF1). Loss of p53 and pRb function allows continued cell division despite increasing telomere dysfunction and eventually entry into telomere crisis. Immortalisation is an essential prerequisite for the formation of a tumour cell. Therefore, a developing tumour cell must circumvent at least two proliferative barriers--cellular senescence and crisis--to achieve neoplastic transformation. These barriers are regulated by telomere shortening and by the p16(INK4a)/Rb and p53 tumour suppressor pathways. Elucidation of the genes and emerging knowledge about the regulatory mechanisms that lead to senescence and determine the pattern of gene expression in senescent cells may lead to more effective treatments for cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    11
    Citations
    NaN
    KQI
    []