A thermal actuated switchable dry adhesive with high reversibility for transfer printing

2021 
Transfer printing based on switchable adhesive that heterogeneously integrates materials is essential to develop novel electronic systems, such as flexible electronics and micro LED displays. Here, we report a robust design of a thermal actuated switchable dry adhesive, which features a stiff sphere embedded in a thermally responsive shape memory polymer (SMP) substrate and encapsulated by an elastomeric membrane. This construct bypasses the unfavorable micro- and nano-fabrication processes and yields an adhesion switchability of over 1000 by combining the peel-rate dependent effect of the elastomeric membrane and the thermal actuation of the sub-surface embedded stiff sphere. Experimental and numerical studies reveal the underlying thermal actuated mechanism and provide insights into the design and operation of the switchable adhesive. Demonstrations of this concept in stamps for transfer printing of fragile objects, such as silicon wafers, silicon chips, and inorganic micro-LED chips, onto challenging non-adhesive surfaces illustrate its potential in heterogeneous material integration applications, such as flexible electronics manufacturing and deterministic assembly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    1
    Citations
    NaN
    KQI
    []