An experimental characterization of core turbulence regimes in Wendelstein 7-X.

2021 
First results from the optimized helias Wendelstein 7-X stellarator (W7-X) have shown that core transport is no longer mostly neoclassical, as is the case in previous kinds of stellarators. Instead, turbulent transport poses a serious limitation to the global performance of the machine. Several studies have found this particularly relevant for ion transport, with core ion temperatures becoming clamped at relatively low values of $T_{i} \simeq 1.7$ keV, except in the few scenarios in which turbulence can be suppressed. In order to understand turbulent mechanisms at play, it is important to have a clear understanding of the parametric dependencies of turbulent fluctuations, and the relation between them and turbulent transport. In this work we use Doppler reflectometry measurements carried out during a number of relevant operational scenarios to provide a systematic characterization of ion-scale ($k_\perp\rho_i\simeq 1$) density fluctuations in the core of W7-X. Then, we study the relation between fluctuation amplitude and plasma profiles and show how distinct regimes can be defined for the former, depending on normalized gradients $a/L_{ne}$ and $a/L_{Ti}$. Furthermore, we discuss the importance of other potentially relevant parameters such as $T_e/T_i$, $E_r$ or collisionality. Comparing the different regimes, we find that turbulence amplitude depends generally on the gradient ratio $\eta_i=L_{ne}/L_{Ti}$, as would be expected for ITG modes, with the exception of a range of discharges, for which turbulence suppression may be better explained by an ITG to TEM transition triggered by a drop in collisionality. Finally, we show a number of scenarios under which $T_{i,core} > 1.7$ keV is achieved and how core fluctuations are suppressed in all of them, thus providing experimental evidence of microturbulence being the main responsible for the limited ion confinement in W7-X.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []