Improved Verifier-Based Three-Party Password-Authenticated Key Exchange Protocol from Ideal Lattices

2021 
With the advent of large-scale social networks, two communication users need to generate session keys with the help of a remote server to communicate securely. In the existing three-party authenticated key exchange (3PAKE) protocols, users’ passwords need to be stored on the server; it cannot resist the server disclosure attack. To solve this security problem, we propose a more efficient 3PAKE protocol based on the verification element by adopting a public-key cryptosystem and approximate smooth projection hash (ASPH) function on an ideal lattice. Using the structure of separating authentication from the server, the user can negotiate the session key only after two rounds of communication. The analysis results show that it can improve the efficiency of computation and communication and resist the server disclosure attack, quantum algorithm attack, and replay attack; moreover, it has session key privacy to the server. This protocol can meet the performance requirement of the current communication network.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []