Measurement and analysis of gas-puff density distributions for plasma radiation source z pinches

2001 
High-sensitivity interferometry measurements of initial density distributions are reviewed for a wide range of gas-puff nozzles used in plasma radiation source (PRS) z -pinch experiments. Accurate gas distributions are required for determining experimental load parameters, modeling implosion dynamics, understanding the radiation properties of the stagnated pinch, and for predicting PRS performance in future experiments. For a number of these nozzles, a simple ballistic-gas-flow model (BFM) has been used to provide good physics-based analytic fits to the measured r , z density distributions. These BFM fits provide a convenient means to smoothly interpolate radial density distributions between discrete axial measurement locations for finer-zoned two-dimensional MHD calculations, and can be used to determine how changes in nozzle parameters and load geometry might alter implosion dynamics and radiation performance. These measurement and analysis techniques are demonstrated for a nested-shell nozzle used in Double Eagle and Saturn experiments. For this nozzle, the analysis suggests load modifications that may increase the K -shell yield.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    12
    Citations
    NaN
    KQI
    []