Phase transition and anomalous rheological properties of graphene oxide- carbon nanotube acrylonitrile butadiene styrene hybrid composites

2018 
Abstract Acrylonitrile butadiene styrene (ABS) nanocomposites with multiwalled carbon nanotubes (MWCNTs), reduced graphene oxide (RGO) and graphene oxide-carbon nanotubes (GCNTs) reinforced acrylonitrile butadiene styrene (ABS) composites were prepared using micro twin screw extruder. The effect of these reinforcements on dynamic rheological properties of composites was studied. Different carbon nanofillers significantly enhanced the viscoelastic properties of nanocomposites. The rheological studies showed that the material undergoes viscous to elastic transition for 5 wt % of MWCNTs, 10% RGO and 7% GCNTs reinforced in ABS matrix. GCNTs hybrid composites show a higher dispersion as well as effectiveness for increased filler amount as compared to RGO and MWCNTs based ABS composites. The dynamic intersection frequency of GCNTs-ABS composites indicates its superiority over MWCNTs and RGO based ABS composites by solving the problem of restacking of graphene and agglomeration of CNTs. Modified Carreau-Yasuda model and Hershcel-Bulkey model have used to determine the yield stress of the composites and van Gurp-Palmen plot to determine the viscoelastic properties. These models were used to compare the theoretical results with experiment data. Dynamic rheological measurements revealed the viscous-like (G″>G′) behavior at the lower loading of filler and elastic like (G′>G″) behavior at higher loading of carbon nanofiller.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    15
    Citations
    NaN
    KQI
    []