Depleting Hypothalamic Somatostatinergic Neurons Recapitulates Diabetic Phenotypes in Brain, Bone Marrow, Adipose, and Retina

2021 
Hypothalamic inflammation and sympathetic nervous system hyperactivity are hallmark features of metabolic syndrome and type 2 diabetes. Hypothalamic inflammation may aggravate metabolic and immunologic pathologies due to extensive sympathetic activation of peripheral tissues. Loss of somatostatinergic (SST) neurons may contribute to enhanced hypothalamic inflammation. The present data show that leptin receptor deficient (db/db) mice exhibit reduced hypothalamic somatostatinergic cells, particularly in the periventricular nucleus. We model this finding, using adeno-associated virus (AAV) delivery of diphtheria toxin (DTA) driven by an SST-cre system to deplete these cells in SSTcre/gfp mice (SST-DTA). SST-DTA mice exhibit enhanced hypothalamic c-fos expression and brain inflammation as demonstrated by microglial and astrocytic activation. Bone marrow from SST-DTA mice undergoes skewed hematopoiesis, generating excess granulocyte-monocyte precursors and increased pro-inflammatory (CCR2hi) monocytes. Visceral mesenteric adipose tissue from DTA-treated animals was resistant to catecholamine induced lipolysis. Finally, SST-DTA mice exhibited a diabetic retinopathy like phenotype: reduced visual function by optokinetic response and electroretinogram, as well as increased percentages of retinal monocytes. Importantly, hyperglycemia was not observed in SST-DTA mice. Thus, the isolated reduction in hypothalamic somatostatinergic neurons was able to recapitulate several hallmark features of type 2 diabetes in disease relevant tissues.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    0
    Citations
    NaN
    KQI
    []