Reflected-starlight phase curves: an observing strategy to constrain the radius and atmospheric properties of directly imaged exoplanets

2021 
The Nancy Grace Roman Space Telescope, to be launched in 2025, will directly image exoplanets in reflected starlight for the first time. This observing technique will enable the study of a population of exoplanets whose atmospheres cannot be characterized with current techniques. Previous works have analysed the possible science outcome of reflected-starlight observations through atmospheric retrievals. These have shown that an accurate atmospheric characterization from a reflected-light spectrum will likely be hindered if the radius and the atmospheric properties (e.g. cloud properties) of the exoplanet are unknown a priori. In this work we study how different observing strategies can improve the atmospheric characterization in such cases. We conclude that combining measurements at different star-planet-observer phase angles is a powerful strategy to better characterize the atmosphere of an exoplanet and constrain its radius.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []