Design and Fabrication of Single-Element CMUTs for Forming a Transcranial Array for Focused Beam Applications

2021 
Focused ultrasound (FUS) offers numerous applications, including ablative therapies and transcranial neural stimulation. Prototypes of high-intensity FUS transducer arrays have been fabricated with the aid of rapid prototyping using piezoelectric (lead zirconate titanate, PZT) elements. However, piezoelectric transducer elements used in this process are manufactured through convoluted process steps, contain harmful element lead (Pb), and require matching layers for effective operation, which adds to the complexity and cost of the overall process. With capacitive micromachined ultrasonic transducer (CMUT) technology, such transducers can be fabricated in a substantially simplified microfabrication process. We have previously reported a three-mask process for fabricating vacuum-sealed CMUTs using anodic bonding. In this work, we designed CMUTs aiming at achieving a negative peak pressure (on the transducer surface) up to 400 kPa at 750-kHz center frequency which is required for the intended transcranial application. Later, we fabricated the designed single-element CMUT transducers and completed the initial characterization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    0
    Citations
    NaN
    KQI
    []