Novel nanocomposite decoy flare based on super-thermite and graphite particles

2020 
Graphite has attracted scientific interest due to its exceptional physical and chemical properties. On combustion, graphite particles offer high emissivity as a black body; therefore, it can find wide application in advanced decoy flares. Thermite particles (metal oxides/metal) can offer a high reaction temperature that is required to stimulate emitting species. In this study, graphite particles were employed with super-thermite Fe2O3 NPs. Novel Mg–Al bimetal alloy was employed as a reactive metal fuel; Viton A (fluorocarbon polymer) was employed as an energetic binder. Multi-component nanocomposite flares were developed via granulation with subsequent pressing. The thermal signature was measured using the IR spectrometer. Nanocomposite flares based on 6 wt% graphite and 2% Fe2O3 NPs demonstrated superior spectral intensity. This flare formulation offered an increase in average intensity by 248% to reference formulation. It offered the highest relative intensity value θ of 0.54. Graphite, as an allotrope of carbon, acts as an excellent source of carbonaceous materials that can strengthen incandescence emission.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    4
    Citations
    NaN
    KQI
    []