Control of the size and luminescence of carbon nanodots by adjusting ambient pressure in laser ablation process

2020 
A femtosecond pulse laser was used to fabricate carbon nanodots (CDs), of which the particle size and photoluminescence (PL) properties could be effectively controlled by adjusting ambient pressure. By increasing the reaction pressure, the particle size of CDs gradually decreased and finally reached less than 1 nm at 4 MPa. Simultaneously, the fluorescence intensity of the CDs first increased and then decreased by further increasing the pressure. By examining the PL dynamics and the chemical structure of the CDs, we found that the PL change of products was attributed to the quantity change of functional groups attached to the CDs due to the surface area change of the carbonic core.A femtosecond pulse laser was used to fabricate carbon nanodots (CDs), of which the particle size and photoluminescence (PL) properties could be effectively controlled by adjusting ambient pressure. By increasing the reaction pressure, the particle size of CDs gradually decreased and finally reached less than 1 nm at 4 MPa. Simultaneously, the fluorescence intensity of the CDs first increased and then decreased by further increasing the pressure. By examining the PL dynamics and the chemical structure of the CDs, we found that the PL change of products was attributed to the quantity change of functional groups attached to the CDs due to the surface area change of the carbonic core.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []