Longitudinal compression and transverse matching of electron bunch for external injection LPWA at ESCULAP

2017 
We present theoretical and numerical studies of longitudinal compression and transverse matching of electron bunch before injecting into the Laser-plasma Wake Field Accelerator (LWFA) foreseen at the ESCULAP project in ORSAY. Longitudinal compression is performed with a dogleg chicane, the chicane is designed based on theory of beam optics, beam dynamics in dogleg is studied with ImpactT and cross checked with CSRtrack, both 3D space charge (SC) and coherent synchrotron radiation (CSR) effects are included. Simulation results show that the energy chirp at the dogleg entrance should be smaller than the nominal optic design value, in order to compensate the negative energy chirp increase caused by longitudinal SC, while CSR can be ignored in our case. With an optimized configuration, the electron bunch ($\sim$10MeV, 10pC) is compressed from 0.9ps RMS to 70fs RMS (53fs FWHM), with a peak current of 152A. Transverse matching is realized with a doublet and a triplet, they are matched with Madx and the electron bunch is tracked with ImpactT, simulation results show little difference with the nominal design values, that is due to the SC effect. Finally, by simply adjusting the quadrupole strength, a preliminary optimized configuration has been achieved, that matches the Courant-Snyder (C-S) parameters to $\alpha_{x}=0.01$,$\alpha_{y}=-0.02$, $\beta_{x}=0.014$m,$\beta_{y}=0.012$m at the plasma entrance.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []