Exponents governing the rarity of disjoint polymers in Brownian last passage percolation

2020 
In last passage percolation models lying in the KPZ universality class, long maximizing paths have a typical deviation from the linear interpolation of their endpoints governed by the two-thirds power of the interpolating distance. This two-thirds power dictates a choice of scaled coordinates, in which these maximizers, now called polymers, cross unit distances with unit-order fluctuations. In this article, we consider Brownian last passage percolation in these scaled coordinates, and prove that the probability of the presence of $k$ disjoint polymers crossing a unit-order region while beginning and ending within a short distance $\epsilon$ of each other is bounded above by $\epsilon^{(k^2 - 1)/2 \, + \, o(1)}$. This result, which we conjecture to be sharp, yields understanding of the uniform nature of the coalescence structure of polymers, and plays a foundational role in [Ham17c] in proving comparison on unit-order scales to Brownian motion for polymer weight profiles from general initial data. The present paper also contains an on-scale articulation of the two-thirds power law for polymer geometry: polymers fluctuate by $\epsilon^{2/3}$ on short scales $\epsilon$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    34
    Citations
    NaN
    KQI
    []