The composition characteristics of different crop straw types and their multivariate analysis and comparison.

2020 
Abstract The heterogeneity and complex composition of crop straw are some of the main obstacles to its scientific and efficient industrial utilization. To thoroughly reveal and identify the composition of different crop straw types and their latent attributes, in this study, 784 straw samples of rice, wheat, corn, rape and cotton were collected. Based on the large sample size, 18 composition characteristics, including chemical composition, proximate composition, ultimate composition, and heating values, were adopted to determine the profiles of the crop straw composition characteristics. Correlation analysis and 7 different types of multivariate analysis were applied and compared. The results indicated that among the 18 characteristics, hemicellulose, water-soluble carbohydrates, crude proteins, phosphorus, fixed carbon, hydrogen, nitrogen, and sulfur had non-normal distributions. Spearman method was a more suitable correlation analysis approach for the crop straw characteristics than Pearson method. The results of the different multivariate analysis methods were reflected in the different classification attributes of water-soluble carbohydrates, phosphorus, hydrogen and sulfur. Non-parametric principal component analysis and non-parametric exploratory factor analysis provided consistent results. The characteristics could be divided into 4 categories of intrinsic associated attributes, namely, (1) lignin, volatile matter, fixed carbon, carbon, hydrogen, higher heating value, and lower heating value; (2) potassium, ash, and sulfur; (3) cellulose, hemicellulose, moisture, and oxygen; and (4) water-soluble carbohydrates, crude proteins, phosphorus, and nitrogen, which exhibited combustion positive, combustion negative, biochemical conversion, and nutritional property, respectively. The study results provide data and methodology support for the development of crop straw utilization strategies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    11
    Citations
    NaN
    KQI
    []