Dynamic clustering in suspension of motile bacteria

2015 
Bacteria suspension exhibits a wide range of collective phenomena, arising from interactions between individual cells. Here we show Serratia marcescens cells near an air-liquid interface spontaneously aggregate into dynamic clusters through surface-mediated hydrodynamic interactions. These long-lived clusters translate randomly and rotate in the counterclockwise direction; they continuously evolve, merge with others and split into smaller ones. Measurements indicate that long-ranged hydrodynamic interactions have strong influences on cluster properties. Bacterial clusters change material and fluid transport near the interface and hence may have environmental and biological consequences.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    33
    Citations
    NaN
    KQI
    []