Tunable dielectric polarization and breakdown behavior for high energy storage capability in P(VDF-TrFE-CFE)/PVDF polymer blended composite films.

2020 
Polymer dielectrics with high dielectric performances and superior discharge energy capability are highly desirable for advanced electrostatic capacitor applications. However, the paradoxical relationship between dielectric polarization and electric breakdown behavior generally hinder their further enhancement in energy storage performances. Herein, polymer blended composite films with high energy storage capability were successfully fabricated by blending together poly(vinylidene fluoride) (PVDF) polymer and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE) terpolymer. The P(VDF-TrFE-CFE) terpolymer has a high dielectric constant to provide a large electric displacement under an applied electric field far below its breakdown field, which is anticipated to modulate the dielectric polarization behavior of PVDF polymer when blended in different proportions. Consequently, the polymer blended composite film consisting of 20 wt% (P(VDF-TrFE-CFE) terpolymer exhibits a high discharge energy density of 13.63 J/cm3 at an enhanced breakdown strength of 480 MV/m. This obtained high discharge energy density is 84% higher than the pure PVDF film and 582% higher than a commercialized biaxially oriented polypropylene (BOPP). Large interfacial polarization and strong interaction of polymer chains between the PVDF polymer and P(VDF-TrFE-CFE) terpolymer may contribute to the tunable dielectric constant and electric breakdown strength, thus promoting the energy storage capability. This work establishes a facile, but effective approach to achieve the high energy storage capability of PVDF polymer-based flexible composite films for capacitive energy storage applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    13
    Citations
    NaN
    KQI
    []