Difference between Horizontal and Vertical Optokinetic Nystagmus in Cats at Upright Position

2001 
The slow-phase velocity (SPV) of optokinetic nystagmus (OKN) and optokinetic after nystagmus (OKAN) in response to a velocity step of surround rotation in the horizontal direction is composed of the rapid and slow components in the cat: a rapid rise, a slow rise to a steady state, a rapid fall, and a slow decline to 0 deg/s. The rapid and slow components are attributed to the direct pathway and velocity storage neuronal mechanisms, respectively. The difference between horizontal and vertical OKN has been reported in the monkey at the upright position, but the slow and rapid components have not been distinguished. The present study compared horizontal OKN-OKAN with vertical OKN-OKAN in the cat at the upright position, distinguishing the rapid and slow components. Constant velocity rotation of a random dot pattern at a velocity of 5 to 160 deg/s was used for optokinetic stimulation. The results: First, the amplitude of the rapid rise was relatively small in all SPV directions and all stimulus velocities investigated, with a slight upward-SPV preference to the downward-SPV (maximum 6.4, 6.0, and 3.4 deg/s in horizontal, upward, and downward SPV directions, respectively). Second, the steady state velocity was large during horizontal OKN (maximum 69.0 deg/s), small during upward-SPV OKN (12.9 deg/s), and missing (SPV is negligibly small and irregular) during downward-SPV OKN, indicating a large directional difference of OKN. Third, the acceleration of the slow rise decreased with the stimulus velocity at higher stimulus velocities >20 deg/s during both horizontal and upward-SPV OKN, suggesting strong nonlinearity in the velocity charge system. Fourth, the decay time course of the OKAN was described by the time constant of the exponential function, and the time constant was longer during horizontal (mean, 8.3 s at a stimulus velocity of 20 deg/s) than during upward-SPV (5.4 s) OKAN, suggesting that the velocity discharge system is relatively linear compared with the velocity charge system. It is concluded that horizontal OKN-OKAN is much larger than vertical OKN-OKAN in the cat at the upright position, and this directional difference is caused mainly by the directional difference in the velocity storage mechanism, but not in the direct pathway mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    6
    Citations
    NaN
    KQI
    []