Spin–Orbit Coupling via Four-Component Multireference Methods: Benchmarking on p-Block Elements and Tentative Recommendations

2018 
Within current electronic structure theory methods, fully relativistic four-component (4c) approaches based on the Dirac Hamiltonian treat spin–orbit coupling with the most rigor. The spin treatment arises naturally from the formulation and does not need to be included ad hoc. Spin–orbit splittings can provide insightful benchmark criteria for the assessment of 4c methods; however, there have not been extensive studies in this respect. Spin–orbit splittings of the p-block elements B–I were computed using the 4c-CASSCF, 4c-CASPT2, and 4c-MR-CISD+Q methods, as recently implemented in BAGEL, with uncontracted Dunning basis sets. Comparison with experiment reveals that the four-component methods yield good results, with most of the computed splittings falling within 15% of the experimental values. A large basis set is needed to obtain accurate splittings of the light elements B–F, while splittings of heavier elements show little basis dependence. The 4c-MR-CISD+Q method gave the best splittings for light elem...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    87
    References
    7
    Citations
    NaN
    KQI
    []