Microstructure, Texture, and Mechanical Properties of β Solution-Treated and Aged Metastable β Titanium Alloy, Ti-5Al-5Mo-5V-3Cr

2017 
The current study describes the aging characteristics and mechanical properties of a metastable β titanium alloy Ti-5Al-5Mo-5V-3Cr. The aged microstructures consist of fine α-phase precipitates (lath morphology) in equiaxed β grains. The sizes of the α-phase precipitates increase with the increasing aging temperature. The β ST WQ and 823 K (550 °C)-aged material exhibits maximum hardness due to precipitation hardening. The low- and high-temperature aging conditions result in strong c-type basal and prismatic textures in the α-phase, respectively. The β-phase of the alloy aged at low temperature reveals the presence of texture with moderate intensity. In contrast, high-temperature-aged material exhibits very strong β-phase texture. The strengths of the alloy under β ST WQ- and 923 K (650 °C)-aged conditions are the maximum and minimum along TD and RD, while the ductility values are the maximum and minimum along the RD and TD direction samples, respectively. The flow curves follow typical Holloman equation along three sample directions, and the work hardening rate curves display two distinctive regimes, namely, stage I and stage II. The yield locus plots of the β ST WQ and aged materials exhibit the presence of anisotropy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    5
    Citations
    NaN
    KQI
    []