Numerical investigation of the effects of fuselage upsweep in a propulsive fuselage concept

2021 
In recent years, aircraft concepts employing wake-filling devices to reduce mission fuel burn have gained increasing attention. The study presented here aims at a detailed physical understanding of the effects of integrating a propulsive fuselage device on a commercial aircraft. Compared to an isolated, axisymmetric fuselage-propulsor configuration, a propulsive fuselage device experiences an increased circumferential inlet distortion due to three-dimensional geometric features of the aircraft. This study uses three-dimensional CFD simulations to investigate the effect of fuselage upsweep on the aero-propulsive performance of an aircraft configuration featuring a boundary layer ingestion device. It is shown that fuselage upsweep has a negative impact on the performance of a propulsive fuselage device as compared to an axisymmetric configuration. Increasing the upsweep angle by $$\Delta \alpha _{{{\text{SW}},{\text{PFC}}}} = 3.5^\circ$$ leads to an increase in required fuselage fan shaft power by 19%. Furthermore, it is demonstrated that the negative effects of fuselage upsweep on the propulsor’s performance can be effectively mitigated by a circumferential variation in the propulsor nacelle thickness.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    1
    Citations
    NaN
    KQI
    []