Fabrication of Titanium Oxide-Based Composites by Reactive SPS Sintering and Their Thermoelectric Properties

2013 
Titanium oxide-based composites containing (1) Nb, (2) Nb and Sr, and (3) Sr and La were fabricated by a combination of wet processing and reactive spark plasma sintering in which the metal oxide components were reduced by reaction with titanium nitride. If only TiO2 was used as the starting material, several Magneli-type phases of oxygen-deficient titanium oxides were obtained. When mixed with Nb ions with Ti:Nb = 0.9:0.1, microsegregation of Nb ions was observed (case 1). If Sr was added, a perovskite, SrTiO3 (STO) phase occurred (case 2), which contained La ions in the case of La addition (case 3). The sintered compacts consisted largely of grains of about 1 μm in size. In the case of Ti-Nb combination (case 1), a unique stripe pattern also appeared inside the grains. The electrical conductivity increased monotonically with increasing temperature in the case of the pure Magneli phases and the Nb-containing composite, whereas bow-shaped temperature dependences with a maximum were observed in the case of the composites containing STO phases. The Seebeck coefficients were commonly negative, and the absolute values increased with temperature. The thermal conductivity was between 2 W m−1 K−1 and 4 W m−1 K−1 in the temperature range from room temperature to 800°C. A maximum ZT of 0.34 was achieved at 800°C (case 2).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    9
    Citations
    NaN
    KQI
    []