Effects of Thermal Annealing on the Thermoelectric and Optical Properties of SiO2/SiO2+Cu Nanolayer Thin Films

2015 
We have prepared multi-nanolayer superlattice thin-film systems comprising 36 alternating layers of SiO2 and SiO2+Cu nanolayers, of total thickness approximately 300 nm, by magnetron direct current–radio frequency sputtering. To modify their thermoelectric and optical properties, the films were placed in a furnace for annealing at temperatures between 500°C and 700°C, in air, for 1 h, to form quantum nano-dots and/or quantum clusters. Atomic force microscopy was used to analyze the surface of the thin-film systems. The thermoelectric and optical properties of the systems were characterized by study of ultraviolet–visible–near infrared absorption, fluorescence, and Raman spectroscopy, and by measurement of Seebeck coefficients. Seebeck coefficients increased from −70 μV/K to −100 μV/K when the temperature was increased from 0°C to 700°C. Optical absorption spectra showed that formation of nano-dots and/or nano-clustering also occurred as the temperature was increased. Thermal annealing affected the optical and thermal properties of the multi-nanolayer thermoelectric thin-film systems in the positive direction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    2
    Citations
    NaN
    KQI
    []