Axial-SpineGAN: simultaneous segmentation and diagnosis of multiple spinal structures on axial magnetic resonance imaging images.

2021 
Providing a simultaneous segmentation and diagnosis of the spinal structures on axial magnetic resonance imaging (MRI) images has significant value for subsequent pathological analyses and clinical treatments. However, this task remains challenging, owing to the significant structural diversity, subtle differences between normal and abnormal structures, implicit borders, and insufficient training data. In this study, we propose an innovative network framework called 'Axial-SpineGAN' comprising a generator, discriminator, and diagnostor, aiming to address the above challenges, and to achieve simultaneous segmentation and disease diagnosis for discs, neural foramens, thecal sacs, and posterior arches on axial MRI images. The generator employs an enhancing feature fusion module to generate discriminative features, i.e. to address the challenges regarding the significant structural diversity and subtle differences between normal and abnormal structures. An enhancing border alignment module is employed to obtain an accurate pixel classification of the implicit borders. The discriminator employs an adversarial learning module to effectively strengthen the higher-order spatial consistency, and to avoid overfitting owing to insufficient training data. The diagnostor employs an automated diagnosis module to provide automated recognition of spinal diseases. Extensive experiments demonstrate that these modules have positive effects on improving the segmentation and diagnosis accuracies. Additionally, the results indicate that Axial-SpineGAN has the highest Dice similarity coefficient (94.9% ± 1.8) in terms of the segmentation accuracy and highest accuracy rate (93.9% ± 2.6) in terms of the diagnosis accuracy, thereby outperforming existing state-of-the-art methods. Therefore, our proposed Axial-SpineGAN is effective and potential as a clinical tool for providing an automated segmentation and disease diagnosis for multiple spinal structures on MRI images.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    1
    Citations
    NaN
    KQI
    []