A Ligand-induced Conformational Change in Apolipoprotein(a) Enhances Covalent Lp(a) Formation

2003 
Abstract Lipoprotein(a) (Lp(a)) assembly proceeds via a two-step mechanism in which initial non-covalent interactions between apolipoprotein(a) (apo(a)) and low density lipoprotein precede disulfide bond formation. In this study, we used analytical ultracentrifugation, differential scanning calorimetry, and intrinsic fluorescence to demonstrate that in the presence of the lysine analog e-aminocaproic acid, apo(a) undergoes a substantial conformational change from a “closed” to an “open” structure that is characterized by an increase in the hydrodynamic radius (∼10%), an alteration in domain stability, as well as a decrease in tryptophan fluorescence. Although e-aminocaproic acid is a well characterized inhibitor of the non-covalent interaction between apo(a) and low density lipoprotein, we report the novel observation that this ligand at low concentrations (100 μm-1 mm) significantly enhances covalent Lp(a) assembly by altering the conformation of apo(a). We developed a model for the kinetics of Lp(a) assembly that incorporates the conformational change as a determinant of the efficiency of the process; this model quantitatively explains our experimental observations. Interestingly, an analogous conformational change has been previously described for plasminogen resulting in an increase in the hydrodynamic radius, an increase in tryptophan fluorescence, and an acceleration of the rate of plasminogen activation. Although the functions of apo(a) and plasminogen have diverged considerably, elements of structural and conformational homology have been retained leading to similar regulation of two unrelated biological processes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    23
    Citations
    NaN
    KQI
    []