Apoptotic proteins Reaper and Grim induce stable inactivation in voltage-gated K+ channels

1998 
Drosophila genes reaper, grim, and head-involution-defective (hid) induce apoptosis in several cellular contexts. N-terminal sequences of these proteins are highly conserved and are similar to N-terminal inactivation domains of voltage-gated potassium (K+) channels. Synthetic Reaper and Grim N terminus peptides induced fast inactivation of Shaker-type K+ channels when applied to the cytoplasmic side of the channel that was qualitatively similar to the inactivation produced by other K+ channel inactivation particles. Mutations that reduce the apoptotic activity of Reaper also reduced the synthetic peptide’s ability to induce channel inactivation, indicating that K+ channel inactivation correlated with apoptotic activity. Coexpression of Reaper RNA or direct injection of full length Reaper protein caused near irreversible block of the K+ channels. These results suggest that Reaper and Grim may participate in initiating apoptosis by stably blocking K+ channels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    41
    Citations
    NaN
    KQI
    []