An Efficient and Low-Power Design of the SM3 Hash Algorithm for IoT

2019 
The Internet-of-Things (IoT) has a security problem that has become increasingly significant. New architecture of SM3 which can be implemented in loT devices is proposed in this paper. The software/hardware co-design approach is put forward to implement the new architecture to achieve high performance and low costs. To facilitate software/hardware co-design, an AHB-SM3 interface controller (AHB-SIC) is designed as an AHB slave interface IP to exchange data with the embedded CPU. Task scheduling and hardware resource optimization techniques are adopted in the design of expansion modules. The task scheduling and critical path optimization techniques are utilized in the compression module design. The proposed architecture is implemented with ASIC using SMIC 130 nm technology. For the purpose of comparison, the proposed architecture is also implemented on Virtex 7 FPGA with a 36 MHz system clock. Compared with the standard implementation of SM3, the proposed architecture saves the number of registers for approximately 3.11 times, and 263 Mbps throughput is achieved under the 36 MHz clock. This design signifies an excellent trade-off between performance and the hardware area. Thus, the design accommodates the resource-limited IoT security devices very well. The proposed architecture is applied to an intelligent security gateway device.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    1
    Citations
    NaN
    KQI
    []