A bi-layered chiral metamaterial with high-performance broadband asymmetric transmission of linearly polarized wave

2019 
Abstract In this paper, a novel bi-layered chiral metamaterial (CMM) is presented to realize high–efficiency broadband asymmetric transmission (AT) of linearly polarized electromagnetic wave (EM) in the microwave region from 10.1GHz to 15.1GHz. For this purpose, a pair of modified resonators is employed on two sides of a thin dielectric substrate. The simulated and measured results confirm that linearly polarized wave in the form of x-polarized or y-polarized could be nearly converted into the orthogonal polarization after transmission through the introduced prototype which is affirmed by the polarization rotation azimuth angle θ . The polarization conversion ratio (PCR) is more than 92% at the mentioned frequency range. Full parametric simulation of modified resonators, azimuth rotation angle, and chirality parameter variable with frequency are discussed in detail. In addition, the surface current distributions of the structure have been demonstrated to investigate the physical mechanism of the cross-polarization and corresponding polarization conversion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    17
    Citations
    NaN
    KQI
    []