Improved Success Probability with Greater Circuit Depth for the Quantum Approximate Optimization Algorithm

2020 
Present-day, noisy, small or intermediate-scale quantum processors---although far from fault-tolerant---support the execution of heuristic quantum algorithms, which might enable a quantum advantage, for example, when applied to combinatorial optimization problems. On small-scale quantum processors, validations of such algorithms serve as important technology demonstrators. We implement the quantum approximate optimization algorithm (QAOA) on our hardware platform, consisting of two superconducting transmon qubits and one parametrically modulated coupler. We solve small instances of the NP-complete exact-cover problem, with 96.6% success probability, by iterating the algorithm up to level two.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    28
    Citations
    NaN
    KQI
    []