On the Security of Smartphone Unlock PINs

2021 
In this article, we provide the first comprehensive study of user-chosen four- and six-digit PINs (n=1705) collected on smartphones with participants being explicitly primed for device unlocking. We find that against a throttled attacker (with 10, 30, or 100 guesses, matching the smartphone unlock setting), using six-digit PINs instead of four-digit PINs provides little to no increase in security and surprisingly may even decrease security. We also study the effects of blocklists, where a set of “easy to guess” PINs is disallowed during selection. Two such blocklists are in use today by iOS, for four digits (274 PINs) as well as six digits (2,910 PINs). We extracted both blocklists and compared them with six other blocklists, three for each PIN length. In each case, we had a small (four-digit: 27 PINs; six-digit: 29 PINs), a large (four-digit: 2,740 PINs; six-digit: 291,000 PINs), and a placebo blocklist that always excluded the first-choice PIN. For four-digit PINs, we find that the relatively small blocklist in use today by iOS offers little to no benefit against a throttled guessing attack. Security gains are only observed when the blocklist is much larger. In the six-digit case, we were able to reach a similar security level with a smaller blocklist. As the user frustration increases with the blocklists size, developers should employ a blocklist that is as small as possible while ensuring the desired security. Based on our analysis, we recommend that for four-digit PINs a blocklist should contain the 1,000 most popular PINs to provide the best balance between usability and security and for six-digit PINs the 2,000 most popular PINs should be blocked.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []