An Evaporation Induced Self-Assembly Method to Porous Li4SiO4 Materials

2016 
A solvent evaporation induced self-assembly (EISA) method followed by calcination was employed to prepare porous Li4SiO4 materials by using LiOH·H2O, TEOS, deionized water, and CTAB + PAA as lithium source, silicon source, solvent, and composite template, respectively. X-ray powder diffraction (XRD) and scanning electron microscope (SEM) were applied to characterize the structure and morphology of the as-prepared Li4SiO4 materials. The pore structures of the Li4SiO4 materials were investigated by the N2 adsorption-desorption analysis. CO2 uptakes and recycle stability of the prepared Li4SiO4 materials were investigated on a thermogravity (TG) analyzer. The sample synthesized by the EISA method at 60˚C displays CO2 uptakes up to 22.5 wt% within 5 min. Additionally, an absorption equilibrium of 28.8 wt% can be available within 10 min at 550˚C and a CO2 partial pressure of 0.25 bar. After five absorption-desorption cycles, the Li4SiO4 material keeps its original CO2 absorption properties, indicating a good cycle stability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    0
    Citations
    NaN
    KQI
    []