Automatic Cell Assembly by Two-fingered Microhand

2019 
We have successfully achieved manipulation and assembly of microbeads having the size of 100μm diameter by hemispherical end-effectors with high stability and accuracy. The motivation of achieving assembly of actual cells lies in the great significance of it in tissue regeneration and cell analysis. Firstly, the most difficult problem we need to solve is the releasing problem caused by adhesion force. The viscosity on cell surface is much larger than the microbeads which makes cell releasing challenging. Secondly, the cell can generate its deformation, then contact area with end-effector will change during grasping process. This may influence the adhesion force and also bring problem to releasing. Thirdly, cell is much smaller, around 15μm in diameter, so we need to fabricate smaller end-effector to achieve successful manipulation and ensure the stability in the meantime. In this paper, we realize the manipulation by decreasing the adhesion forces and apply vibration to release a cell stably. We found the appropriate scale size for the end-effector is around 10μm diameter. It can not only grasp a 15μm cell but also bring little interference to the environment. As a demonstration of the proposed manipulation method, the repeated experiments were conducted to explore the dependence of adhesion force on the grasping distance, which can be helpful in the improvement of successful rate. Finally, we achieved automatic cell assembly using Hela cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    0
    Citations
    NaN
    KQI
    []