Does intensification with UV light and US improve the sustainability of electrolytic waste treatment processes

2020 
Abstract This work aims to assess the influence of ultrasounds (US) application or ultraviolet (UV) light irradiation on the efficiency and sustainability of the treatment of wastes by conductive diamond electrochemical oxidation (CDEO). To do this, a life cycle assessment (LCA) is carried out in order to quantify the environmental impacts of the intensified CDEO processes. Inventories of three bench scale remediation plants (CDEO, Sono-CDEO and Photo-CDEO) in which the different technologies are implemented are performed by means of Ecoinvent 3.3 data base. AWARE, USEtox, IPPC and ReCiPe methodologies are used to quantify the environmental burden into 5 midpoint (water footprint, global warming 100a, ozone layer depletion, human toxicity, freshwater ecotoxicity) and 17 endpoint impact categories. Photo-CDEO attains the faster and more efficient removal in terms of energy consumed. All impact categories are lower in the case in which UV light irradiation is coupled to the CDEO treatment, particularly if the electrolyte does not contain chloride anions. From the point of view of toxicity and ecotoxicity, it is essential to achieve a complete mineralization, because of the intermediates generated into wastes containing chloride anions can become more hazardous than the initial pesticide. The operation of these technologies at large current densities shows positive results from the sustainability point of view, despite the huge environmental impact related to the energy production. Data notice that almost a 99.0% of the total global warming potential is mainly due to the electricity required during the electrochemical treatment, being higher by the sono and photo CDEO treatments because of the use of additional devices. Nevertheless, this issue can be overcome by means of using renewable energies as power sources of these remediation treatments. According to results, it can be claimed that the electrochemical technologies may successfully compete with other AOPs in terms of sustainability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    2
    Citations
    NaN
    KQI
    []