Controllable radiation properties of a driven exciton-biexciton quantum dot couples to a graphene sheet

2018 
We investigate the radiation properties of a driven exciton-biexciton structure quantum dot placed close to a graphene sheet. The study of the Purcell factor then demonstrates the tunability of light-matter coupling, which in turn provides the possibility to control the steady-state populations. As the result, dipole transitions can be selectively enhanced and asymmetry in the resonance fluorescence can be observed. Meanwhile, both quadratures can exhibit two-mode squeezing at the Rabi sideband frequencies. A further study shows that although the increase in the environment temperature has a destructive influence on the population imbalance, squeezing occurs even at room temperature. Due to the flexibility in controlling the resonance fluorescence spectrum and producing two-mode squeezed states, our proposal would have potential applications in quantum information and other quantum research fields.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    96
    References
    4
    Citations
    NaN
    KQI
    []