Biocompatible Chitin Hydrogel Incorporated with PEDOT Nanoparticles for Peripheral Nerve Repair.

2021 
The nerve guidance conduit (NGC) is a promising clinical strategy for regenerating the critical-sized peripheral nerve injury. In this study, the polysaccharide chitin is used to fabricate the hydrogel film for inducing the impaired sciatic nerve regeneration through incorporating the conductive poly(3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs) and modifying with cell adhesive tetrapeptide Cys-Arg-Gly-Asp (CRGD) (ChT-PEDOT-p). The partial deacetylation process of chitin for exposing the amino groups is performed to (i) improve the electrostatic interaction between chitin and the negatively charged PEDOT for enhancing the composite hydrogel strength and (ii) offer the active sites for peptide modification. The as-prepared hydrogel remarkably promotes the in vitro RSC-96 cell adhesion and proliferation, as well as the Schwann cell activity-related gene S100, NF-200, and myelin basic protein (MBP) expression. Function of gastrocnemius muscle and thickness of myelinated axon in chitin/PEDOT groups are analogous to the autograft in 10 mm rat sciatic nerve defect. Immunofluorescence, immunohistochemistry, western blotting, and toluidine blue staining analyses on the regenerated sciatic nerve explain that the attachment and proliferation enhancement of Schwann cells and angiogenesis are the vital factors for the chitin/PEDOT composite to facilitate the nerve regeneration. This work provides an applicable chitin-based NGC material for accelerating the peripheral nerve restoration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    5
    Citations
    NaN
    KQI
    []