Evolution of Inclusions in Steelmaking Process of Rare Earth Steels Containing Arsenic with Alumina Crucibles

2020 
In order to determine strategies for removing arsenic from rare earth arsenic-containing steels, the evolution of inclusions in the whole steelmaking process with alumina crucibles was investigated. It has been proven that adding lanthanum has a significant effect on both the existing state and content of arsenic in steel. The content of arsenic steeply decreased after adding 0.148% lanthanum by generating La–S–As inclusions. The addition of 0.054% lanthanum did not dramatically affect the content of arsenic. Both 0.148% and 0.054% additions of lanthanum modified the existing Si–Mn–Al–O inclusions, making them first change to La-containing inclusions, and then change back to Si–Mn–Al–O inclusions. During this process, the compositions of inclusions changed from (SiO2–MnO)-rich to Al2O3-rich ones, owing to the reactions between lanthanum and alumina crucibles. The addition of 0.148% lanthanum resulted in a relatively severe reaction with the alumina crucible. This led to the decomposition of a part of the existing La–S–As inclusions and a slight increase in the arsenic content. Therefore, it is noted that choosing an appropriate holding time after adding rare earth elements to molten steel has a significant effect on the arsenic removal and saving the consumption of rare earth elements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    6
    Citations
    NaN
    KQI
    []