Galactic evolution of copper in the light of NLTE computations

2018 
We have developed a model atom for Cu with which we perform statistical equilibrium computations that allow us to compute the line formation of Cu I lines in stellar atmospheres without assuming Local Thermodynamic Equilibrium (LTE). We validate this model atom by reproducing the observed line profiles of the Sun, Procyon and eleven metal-poor stars. Our sample of stars includes both dwarfs and giants. Over a wide range of stellar parameters we obtain excellent agreement among different Cu I lines. The eleven metal-poor stars have iron abundances in the range -4.2 <= [Fe/H] <= -1.4, the weighted mean of the [Cu/Fe] ratios is -0.22 dex, with a scatter of -0.15 dex. This is very different from the results from LTE analysis (the difference between NLTE and LTE abundances reaches 1 dex) and in spite of the small size of our sample it prompts for a revision of the Galactic evolution of Cu.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    25
    Citations
    NaN
    KQI
    []