Nonparametric quantile estimation using importance sampling

2018 
Nonparametric estimation of a quantile of a random variable m(X) is considered, where \(m: \mathbb {R}^d\rightarrow \mathbb {R}\) is a function which is costly to compute and X is a \(\mathbb {R}^d\)-valued random variable with a given density. An importance sampling quantile estimate of m(X), which is based on a suitable estimate \(m_n\) of m, is defined, and it is shown that this estimate achieves a rate of convergence of order \(\log ^{1.5}(n)/n\). The finite sample size behavior of the estimate is illustrated by simulated data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    8
    Citations
    NaN
    KQI
    []