Multiple polymorphic loci determine basal hepatic and splenic iron status in mice

2006 
Polymorphisms of genes linked to iron metabolism may account for individual variability in hemochromatosis and iron status connected with liver and cardiovascular diseases, cancers, toxicity, and infection. Mouse strains exhibit marked differences in levels of non-heme iron, with C57BL/6J and SWR showing low and high levels, respectively. The genetic basis for this variability was examined using quantitative trait loci (QTL) analysis together with expression profiling and chromosomal positions of known iron-related genes. Non-heme iron levels in liver and spleen of C57BL/6J × SWR F2 mice were poorly correlated, indicating independent regulation. Highly significant (P < .01) polymorphic loci were found on chromosomes 2 and 16 for liver and on chromosomes 8 and 9 for spleen. With sex as a covariate, additional significant or suggestive (P < 0.1) QTL were detected on chromosomes 7, 8, 11, and 19 for liver and on chromosome 2 for spleen. A gene array showed no clear association between most loci and differential iron-related gene expression. The gene for transferrin and a transferrin-like gene map close to the QTL on chromosome 9. Transferrin saturation was significantly lower in C57BL/6J mice than in SWR mice, but there was no significant difference in the serum level of transferrin, hepatic expression, or functional change in cDNA sequence. β2-Microglobulin, which, unlike other loci, was associated with C57BL/6J alleles, is a candidate for the chromosome 2 QTL for higher iron. In conclusion, the findings show the location of polymorphic genes that determine basal iron status in wild-type mice. Human equivalents may be pertinent in predisposition to hepatic and other disorders. (HEPATOLOGY 2006;44:174–185.)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    19
    Citations
    NaN
    KQI
    []