Lipid-rich and protein-poor carbon allocation patterns of phytoplankton in the northern Chukchi Sea, 2011

2018 
Abstract The carbon allocations of phytoplankton into different photosynthetic end products (lipids, LMWM, polysaccharides, and proteins) were determined to understand physiological conditions of phytoplankton in the northern Chukchi Sea during the Korean Arctic expedition, 2011, using the 13 C isotope tracer technique. The carbon allocation rates of lipids, LMWM, polysaccharides, and proteins were 0.00009–0.00062 h −1 , 0.00001–0.00049 h −1 , 0.00001–0.00025 h −1 , and 0.00001–0.00062 h −1 within the euphotic depths from surface to 1% light depths during our cruise period, respectively. Significant relationships between protein production rates and chlorophyll a concentrations (large and total) were found in this study. Moreover, we found a significant negative relationship between lipid production rates and ammonium concentrations. These relationships match well with the previous results for environmental/physiological conditions for phytoplankton growth. Overall, phytoplankton allocated more photosynthetic carbon into lipids (42.5 ± 17.7%) whereas relatively lower to proteins (20.4 ± 15.5%) in this study. The lipid-rich and protein-poor allocation patterns in this study suggest that phytoplankton in the northern Chukchi Sea were in a stationary growth phase under nutrient deficient condition based on biological and environmental conditions observed during our study period. Based on comparison with the previous studies in the northern Bering Sea and southern Chukchi Sea, we found that the photosynthetic carbon allocation patterns depending on physiological status of phytoplankton under the different growth and/or nutrient conditions could be largely vary at different regions in the Arctic Ocean. More intensive research on the physiological status of phytoplankton is further required to determine how phytoplankton response to the changing environmental conditions and consequently how they impact on higher trophic levels in marine ecosystems in the Arctic Ocean.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    3
    Citations
    NaN
    KQI
    []