Selenium Regulation of the Immune Function of Dendritic Cells in Mice Through the ERK, Akt and RhoA/ROCK Pathways.

2020 
Selenium levels can regulate the function of T cells, macrophages, B cells, natural killer cells and other immune cells. However, the effect of selenium on the immune function of dendritic cells (DCs) isolated from selenium-supplemented mice is unknown. In this study, C57BL/6J mice were randomly divided into three groups and fed diets containing low (0.08 ppm), medium (0.25 ppm) or high (1 ppm) selenium levels for 8 weeks. Immature (imDCs) and mature (mDCs) dendritic cells were then isolated from the bone marrow. Next, the migration, phagocytic capacity and mixed lymphocyte reaction (MLR) for imDCs and mDCs were detected by transwell and flow cytometry. The levels of C-C chemokine receptor type 7 (CCR7), major histocompatibility complex II (MHCII) and reactive oxygen species (ROS) were assayed by flow cytometry. F-actin and superoxide dismutase (SOD) activity was detected by fluorescence microscopy and SOD assay kit, respectively. In addition, the extracellular signal-regulated kinase (ERK), Akt, Ras homolog gene family member A/Rho-associated protein kinase (RhoA/ROCK) signalling, selenoprotein K (SELENOK) and glutathione peroxidase 1 (GPX1) levels were measured by western blot analysis. The results indicated that selenium deficiency enhanced the migration of imDCs by ROS and SELENOK-mediated ERK, Akt and RhoA/ROCK pathways but impaired the antigen uptake of imDCs. Although a high selenium level inhibited the migration of imDCs, it had no effect on phagocytic capacity. For mDCs, low selenium levels impaired free migration, and high levels inhibited the chemotactic migration involved in F-actin and CCR7, respectively. Low and high selenium levels impaired the MLR by inhibiting MHCII surface localisation, which might be related to ROS- and SELENOK-mediated ERK, Akt and RhoA/ROCK signalling pathways. In summary, selenium may regulate the immune function of mouse DCs through the ROS- and SELENOK-mediated ERK, Akt and RhoA/ROCK signalling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    4
    Citations
    NaN
    KQI
    []