Comprehensive assessment of coronary calcification in intravascular OCT using a spatial-temporal encoder-decoder network.

2021 
Coronary calcification is a strong indicator of coronary artery disease and a key determinant of the outcome of percutaneous coronary intervention. We propose a fully automated method to segment and quantify coronary calcification in intravascular OCT (IVOCT) images based on convolutional neural networks (CNN). All possible calcified plaques were segmented from IVOCT pullbacks using a spatial-temporal encoder-decoder network by exploiting the 3D continuity information of the plaques, which were then screened and classified by a DenseNet network to reduce false positives. A novel data augmentation method based on the IVOCT image acquisition pattern was also proposed to improve the performance and robustness of the segmentation. Clinically relevant metrics including calcification area, depth, angle, thickness, volume, and stent-deployment calcification score, were automatically computed. 13844 IVOCT images with 2627 calcification slices from 45 clinical OCT pullbacks were collected and used to train and test the model. The proposed method performed significantly better than existing state-of-the-art 2D and 3D CNN methods. The data augmentation method improved the Dice similarity coefficient for calcification segmentation from 0.615±0.332 to 0.756±0.222, reaching human-level inter-observer agreement. Our proposed region-based classifier improved image-level calcification classification precision and F1-score from 0.725±0.071 and 0.791±0.041 to 0.964±0.002 and 0.883±0.008, respectively. Bland-Altman analysis showed close agreement between manual and automatic calcification measurements. Our proposed method is valuable for automated assessment of coronary calcification lesions and in-procedure planning of stent deployment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []