Azide-Based High-Energy Metal–Organic Frameworkswith Enhanced Thermal Stability

2019 
We describe the structure and properties of [Zn(C6H4N5)N3]n, a new nonporous three-dimensional high-energy metal–organic framework (HE-MOF) with enhanced thermal stability. The compound is synthesized by the hydrothermal method with in situ ligand formation under controlled pH and characterized using single-crystal X-ray diffraction, elemental analysis, and Fourier transform infrared. The measured detonation temperature (Tdet = 345 °C) and heat of detonation (ΔHdet = −0.380 kcal/g) compare well with commercial explosives and other nitrogen-rich HE-MOFs. The velocity and pressure of denotation are 5.96 km/s and 9.56 GPa, respectively. Differential scanning calorimetry analysis shows that the denotation of [Zn(C6H4N5)N3]n occurs via a complex temperature-dependent mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    6
    Citations
    NaN
    KQI
    []