Effects of Dentin Ablation by a Q-Switching Er:YSGG Laser with a High Pulse Repetition Rate.

2020 
Objective: The aim of the study was to evaluate the characteristics of dentin ablation with a high pulse repetition rate Q-switching 2.79 μm laser. Materials and methods: Dentin was ablated using a homemade Q-switching Er:YSGG laser with a high pulse repetition rate. Er:YSGG radiation was applied with a pulse energy of 1 or 10 mJ for 100 or 3 Hz pulse repetition rate, respectively. A scanning electron microscope (SEM) was used to observe the microstructures of dentin samples after ablation. Teeth were irradiated in vitro with a 100 Hz pulse repetition rate under two different modes: free running and Q-switching. A thermocouple was applied to measure the temperature in the pulp cavity during ablation. Results: A 100 or 3 Hz Q-switching laser was used to irradiate dentin for 30 and 100 sec, respectively. There was no significant difference in ablation mass loss between the two conditions. The SEM photographs showed more dentinal tubules and no damage in the ablation area when using the 100 Hz Q-switching laser. The temperature of the pulp cavity was maintained below 41°C when using a Q-switching laser. Conclusions: The Q-switching Er:YSGG laser with a high pulse repetition rate exhibited greater ablation efficiency and better morphology than the low pulse repetition rate Q-switching laser. The experimental results also demonstrate the significant advantage of the Q-switching laser over free-running lasers for protecting dental pulp tissue. The Q-switching Er:YSGG laser with a high pulse repetition rate is expected to become an efficient new dental tool.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []