The isomorphism problem for plain groups is in $\Sigma_3^{\mathsf{P}}$

2021 
Testing isomorphism of infinite groups is a classical topic, but from the complexity theory viewpoint, few results are known. S\'enizergues and Wei\ss (ICALP2018) proved that the isomorphism problem for virtually free groups is decidable in $\mathsf{PSPACE}$ when the input is given in terms of so-called virtually free presentations. Here we consider the isomorphism problem for the class of \emph{plain groups}, that is, groups that are isomorphic to a free product of finitely many finite groups and finitely many copies of the infinite cyclic group. Every plain group is naturally and efficiently presented via an inverse-closed finite convergent length-reducing rewriting system. We prove that the isomorphism problem for plain groups given in this form lies in the polynomial time hierarchy, more precisely, in $\Sigma_3^{\mathsf{P}}$. This result is achieved by combining new geometric and algebraic characterisations of groups presented by inverse-closed finite convergent length-reducing rewriting systems developed in recent work of Elder and Piggott (2021) with classical finite group isomorphism results of Babai and Szemer\'edi (1984).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []