Decoupled Representation Learning for Attributed Networks

2021 
Network representation learning or network embedding has attracted wide attention due to its effectiveness on various network-oriented applications in recent years. Though large efforts have been made, they usually model the interactions between nodes reflected by network structure and attributes in a coupled way. To this end, in this article, we comprehensively study the problem of learning attributed network embedding, which focuses on characterizing different types of interactions among nodes and alleviating the sparse attribute problem as well. Specifically, we propose a novel DeCoupled Network Embedding (DCNE) model to learn node representations in a unified framework. We first respectively project both nodes and attributes into low-dimensional vectorial space. Then, we introduce a novel ‘`decoupled-fusion’' learning process into each graph layer to iteratively generate the node embeddings. In particular, we propose two adapted graph convolution modules to decouple the learning of network structure and attributes respectively, and a fusion module to adaptively aggregate the information. Next, we adopt a modified mini-batch algorithm to iteratively aggregate the higher-order information of both nodes and attributes within a multi-task learning framework. Extensive experiments on five public datasets demonstrate that DCNE could outperform state-of-the-art methods on multiple benchmark tasks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []