Impacts of Radiation and Upper-Tropospheric Temperatures on Tropical Cyclone Structure and Intensity

2019 
AbstractPotential intensity theory predicts that the upper-tropospheric temperature acts as an important constraint on tropical cyclone (TC) intensity. The physical mechanisms through which the upper troposphere impacts TC intensity and structure have not been fully explored, however, due in part to limited observations and the complex interactions between clouds, radiation, and TC dynamics. In this study, idealized Weather Research and Forecasting Model ensembles initialized with a combination of three different tropopause temperatures and with no radiation, longwave radiation only, and full diurnal radiation are used to examine the physical mechanisms in the TC–upper-tropospheric temperature relationship on weather time scales. Simulated TC intensity and structure are strongly sensitive to colder tropopause temperatures using only longwave radiation, but are less sensitive using full radiation and no radiation. Colder tropopause temperatures result in deeper convection and increased ice mass aloft in al...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    10
    Citations
    NaN
    KQI
    []