Honokiol antagonizes doxorubicin resistance in human breast cancer via miR-188-5p/FBXW7/c-Myc pathway.

2021 
Background Honokiol, a natural phenolic compound derived from Magnolia plants, is a promising anti-tumor compound that exerts a wide range of anti-cancer effects. Herein, we investigated the effect of honokiol on doxorubicin resistance in breast cancer. Methods Doxorubicin-sensitive (MCF-7 and MDA-MB-231) and doxorubicin-resistant (MCF-7/ADR and MDA-MB-231/ADR) breast cancer cell lines were treated with doxorubicin in the absence or presence of honokiol; then, the following tests were performed: flow cytometry for cell apoptosis, WST-1 assay for cell viability, qPCR and western blot for the expression of miR-188-5p, FBXW7, and c-Myc. MiR-188-5p mimic, miR-188-5p inhibitor, siFBXW7, and c-Myc plasmids were transfected into cancer cells to evaluate whether miR-188-5p and FBXW7/c-Myc signaling are involved in the effect of honokiol on doxorubicin resistance in breast cancer. A dual luciferase reporter system was used to study the direct interaction between miR-188-5p and FBXW7. Results Honokiol sensitized doxorubicin-resistant breast cancer cells to doxorubicin-induced apoptosis. Mechanically, upregulation of miR-188-5p was associated with doxorubicin resistance, and honokiol enhanced doxorubicin sensitivity by downregulating miR-188-5p. FBXW7 was confirmed to be a direct target gene of miR-188-5p. FBXW7/c-Myc signaling was involved in the chemosensitization effect of honokiol. Honokiol induced apoptosis in MCF-7/ADR and MDA-MB-231/ADR cells. However, FBXW7 silencing or c-Myc transfection resulted in resistance to the honokiol-induced apoptotic effect. Conclusion These findings suggest that downregulation of miR-188-5p by honokiol enhances doxorubicin sensitivity through FBXW7/c-Myc signaling in human breast cancer. Our study finds an important role of miR-188-5p in the development of doxorubicin resistance in breast cancer, and enriches our understanding of the mechanism of action of honokiol in cancer therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []